How Effective is
cFosSpeed Traffic Shaping?

Christoph Liiders & Christian Carazo,
cFos Software GmbH

November 16, 2018

The effect of cFosSpeed Traffic Shaping was tested on a VDSL-100 connection by measuring ping
times while an upload or a download, respectively, were running. The average times with and without
cFosSpeed were compared and lead to the conclusion that cFosSpeed Traffic Shaping can keep the
delay from data transfers 3 to 10 times lower than without.

1 Introduction

Traffic Shaping is a technique to reorder Internet data
packets in such a way that urgent traffic is transferred
first and the rest of the data later. For example, data
packets of a VoIP application should be transferred
quicker (i.e., with less latency) than packets of an up-
or download. Usually, it’s not important if the down-
load is ready 1 second earlier or later, whereas a VoIP
connection with a delay of 0.5 seconds is almost unus-
able.

To that end, cFosSpeed was created. It is a software
for the Windows operating system and is in widespread
use since 2004. There exist some other programs that
have a built-in capability to reduce their data band-
width so as not to interfere with other applications, but
cFosSpeed is the only fully automatic software solution
in the market today that can be used for all programs
on Windows.

This report assesses how well cFosSpeed works in to-
day’s Internet with a modern, fast Internet connection.
One could think that modern Internet connections with
their high bandwidth have made cFosSpeed superfluous.
We will show that this is not the case.

Even though the authors work for cFos Software GmbH
that develops and sells cFosSpeed, we aim at maximum
clarity in this report. You should be able to reproduce
all the effects at home, so we provide a lot of detail.

2 Test setup

The tests were done on a VDSL line in Germany,
namely a VDSL-100 line by Deutsche Telekom. The

router used was a Speedport W724V (Typ C), firmware
05011603.06.001. At the time of the test (25.10.2018)
it showed a “DSL Downstream” speed of 109341 kbit /s
and a “DSL Upstream” speed of 40143 kbit/s. This
router model has no internal prioritization support. The
test machine was connected to the router by Gigabit
Ethernet LAN.

The test was done on a Windows 10 RS4 machine (Mi-
crosoft Windows 10 Pro, build 10.0.17134) with 64 bit.
cFosSpeed version was 10.27.2330, downloadable from
https://www.cfos.de/en/index.htm. cFosSpeed was
in “Favor Ping Time” mode and set to “cooperative”,
signifying there are no other non-cFosSpeed clients in
the LAN. The “medium” was set to “VDSL”.

For transfers we used Firefox, version 63.0 (64-bit). For
the download tests we downloaded the 1 GB file (incom-
pressible data) from https://www.thinkbroadband.c
om/download. For upload, we uploaded the 512 MB
file from the same source to http://www.cfos.de/en
/upload/index.htm. This page allows cFos users to
upload files for diagnostic purposes. The transfers were
canceled after about 60 seconds.

To measure responsiveness, we used the hrPing utility,
version 5.07.1148, from https://www.cfos.de/en/pin
g/ping.htm. Its main advantage is that it measures
with microsecond accuracy. Furthermore, it allows UDP
pings and measures the RTTs of ICMP error messages
as well.

The exact command used was:

hrping heise.de -t -y -g -s200 -u -10 -i3 -F
values.txt.

This will use heise.de as target, ping continuously
(-t), print a summary to the screen (-y), show the

https://www.cfos.de/en/index.htm
https://www.thinkbroadband.com/download
https://www.thinkbroadband.com/download
http://www.cfos.de/en/upload/index.htm
http://www.cfos.de/en/upload/index.htm
https://www.cfos.de/en/ping/ping.htm
https://www.cfos.de/en/ping/ping.htm
heise.de

results graphically (-g), leave 200 ms delay between
successive pings (-s200), send UDP packets (-u) with
0 bytes payload (-10) and TTL 3 (-i3) and additionally
write all output to a file (-F values.txt).

We used the UDP ping option, since some routers pri-
oritize ping packets, thus preventing the use of them
to measure line congestion. Since we set TTL to 3,
the packets are bounced at hop 3; this is already on
the ISP side of our DSL line, thus it measures the bot-
tleneck and only the bottleneck of the whole path to
almost any destination. Setting a higher TTL value will
increase the inaccuracy of the measurement. Further-
more, replies to the UDP ping by the host are filtered
by firewalls, thus we need to use -i with —u to make the
measurement work. Since we use TTL 3, ping packets
will not reach the host heise.de, so we could have used
almost any host that is not in the 3 hop range.

In the following, we compare the ping time ¢ncrease
that a transfer (up- or download) causes, compared to
the base ping, i.e., the ping time without any load on
the line. This is more useful than comparing raw ping
times, since the raw ping time almost entirely depends
on the ping time to the ISP (usually, the first hop after
the router) and is thus quite arbitrary.

The raw ping time can not be changed anyway, so the
second best thing anyone can do is keep the increase
from transfers small.

2.1 Rolling your own

If you want to replicate the download tests, be sure to
choose a sending host that is sending fast enough. It
must be more than able to fully utilize your connection,
since you want to simulate congestion, i.e., sending of
too much data.

The same holds for the upload tests. Make sure your
machine sends fast enough and the receiver is able to
handle data at that speed.

In both cases, hosts near to you are usually better than
hosts on other continents. A significantly elevated ping
time while transferring (without the use of cFosSpeed)
indicates that the test setup is good.

As ping target, make sure the host is on “the Internet”,
i.e., no longer in your LAN, but on the ISP’s side of
your connection. Even so, one can select a TTL value
that is too small and doesn’t show any delay when the
line is under full load. A larger TTL solves this issue.

Be sure to use the latest version of cFosSpeed, since
updates are released often.

Disable all other traffic through your router and don’t
forget to switch off your WLAN.

3 Measurements

We first measured the base ping time (ping time without
any traffic) for 60 seconds, then we downloaded data
for 60 seconds, waited some, then we uploaded data for
the same time.

This test was done once without cFosSpeed installed
and once with.

3.1 Without cFosSpeed

For the first series of tests, cFosSpeed was not in-
stalled.

3.1.1 Base ping measurement

The base ping time was measured. The resulting ping
time plot looks like this:

T T I I I
12 —— base ping |
- - - average
11 -
ORI LS JU O, ULl
1 | Wi I il 0 l |
10 .
| | | | | | |
0 10 20 30 40 50 60

The ping time statistics are: min==8.71, average=9.233,
max=10.148, stddev=0.24624, median=9.216.

There was some fluctuation, but almost all measure-
ments lie within 1 ms. That is accurate enough for
us.

3.1.2 Download test

Next, we started a download while we still measured
ping times. The ping time plot looks like this:

I I I T T T T
1 DL
60| ___ average b
- - - base ping

40 - =
20 |- I

S

0 10 20 30 40 50 60

The ping time statistics are:
erage=26.162, max=49.045,
dian=23.841.

min=15.486,
stddev=6.6275,

av-
me-

The average increase from the base ping was about
16 ms.

One can see nicely the increase in congestion by the
sender until (presumably) some packet loss happens and
the congestion window is lowered again. One can even
guess that the sender uses TCP CUBIC, since parts of
the plot have a fairly cubic (f(x) = 23) appearance.

3.1.3 Upload test

Following, we started an upload and measured the ping
time while it ran. The plot looks like this:

T T T T T T
TN S LA LA A AR LA .
50 + 1 UL N
- - - average
- - - base ping
T
0 10 20 30 40 50 60
The ping time statistics are: min=99.338, av-

erage=105.07,
dian=105.22.

max=111.83, stddev=2.1675, me-

The average increase from the base ping was about
95 ms.

The test machine kept a high level of “pressure” on the
line all the time, resulting in high congestion.

3.2 With cFosSpeed activated

For the second series of tests, cFosSpeed was installed
with Traffic Shaping activated and “Favor Ping Time”
mode enabled.

3.2.1 Base ping

The base ping time was measured.

The ping time statistics are: min=8.71, average=9.233,
max=10.148, stddev=0.24624, median=9.216.

The average of 9.233 ms is not totally the same as
without cFosSpeed (10.337 ms), but this is within the
normal fluctuations that we experienced. Even in these
one minute snippets one can see certain fluctuations in
the moving average.

This is how the plot looks like:

—bas‘eping‘

10 || - - - average .
9.5} |
L |]J I Mllll il
R e
6 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0

3.2.2 Download test

Then we did the download test and this is how the
resulting plot looks like:

I
——1DL
- - - average
- - - base pin,
s pmg | |
20 - 8
| | | | | | |

0 10 20 30 40 50 60
The ping time statistics are: min=9.713, av-
erage=15.343, max=>53.004, stddev=3.849, me-

dian=14.615.

The average increase from the base ping was only about
5 ms.

It took less than 2 seconds until cFosSpeed had tamed

the TCP stream. After that, the ping time stayed nice
and low.

3.2.3 Upload test

Next came the upload test.

The ping time statistics are: min=8.888,
erage=19.999, max=114.14, stddev=18.29,
dian=12.791.

av-
me-

The average increase from the base ping was only about
10 ms.

The plot of ping times looks like this:

I
—1UL
100 |- --- average ||
- - - base ping
50 N
(o)) — ! ! ! ! ! [—

Within the first 2 seconds, cFosSpeed adapted to the
high upload bandwidth and could afterwards keep the
congestion at bay, leading to an average ping time of
even 16.929 ms (starting from second 2).

4 Comparison

To provide a visual comparison, we overlay the plots.
The light colored plots are without cFosSpeed, the
darker colored ones are with cFosSpeed. The dashed
lines are the averages.

4.1 Download

These are the plots of the downloads:

0 10

The ping times were much lower with cFosSpeed in-
stalled, specifically, there were no more high outliers;
the regular sawtooth pattern had disappeared and a
reasonably even distribution of low ping times was
achieved.

The following table shows the numbers side by side.

Increase in ms

15.825
5.006

Scenario

Download, no TS
Download with TS

Ping in ms
26.162
15.343

Dividing the increase without cFosSpeed by the one
with cFosSpeed leads to a factor of 3.2. That is, with
cFosSpeed installed, a download slows down the con-
nection 3.2 times less!

4.2 Upload

This is how the upload plots look like:

100 N

50

It’s much more obvious in the upload case: here the
ping time was always high if cFosSpeed was not used.
On the other hand, if cFosSpeed was active, the ping
times were very low, oftentimes almost as low as the
base ping.

Let’s compare the numbers:

Scenario Ping in ms | Increase in ms
Upload, no TS 105.070 94.733
Upload with TS 19.999 9.662

Dividing the average increased ping time without cFos-
Speed by the one where cFosSpeed was active yields
an impressive factor of 9.8, meaning the upload caused
almost 10 times less delay when cFosSpeed was in-
stalled!

5 Conclusion

We took ping times while a download respectively an
upload was in progress. We compared times taken with
and without cFosSpeed Traffic Shaping on a VDSL-100
connection (109341 kbit/s down, 40143 kbit/s up).

cFosSpeed Traffic Shaping could lower the ping times
considerably. When downloading, cFosSpeed kept the
additional delay 3.2 times lower. When uploading, the
delay was even 9.8 times less!

This means that even today with high-speed Internet
connections, cFosSpeed can greatly help to keep the
delay that transfers impose low. This can help in cases
where low ping times are essential, like when using VoIP
or terminal sessions, playing online games, etc.

	Introduction
	Test setup
	Rolling your own

	Measurements
	Without cFosSpeed
	Base ping measurement
	Download test
	Upload test

	With cFosSpeed activated
	Base ping
	Download test
	Upload test

	Comparison
	Download
	Upload

	Conclusion

